Prediction of bond dissociation energies and transition state barriers by a modified complete basis set model chemistry
نویسندگان
چکیده
The complete basis set model chemistries CBS-4 and CBS-q were modified using density functional theory for the geometry optimization step of these methods. The accuracy of predicted bond dissociation energies and transition state barrier heights was investigated based on geometry optimizations using the B3LYP functional with basis set sizes ranging from 3-21G(d ,p) to 6-311G(d ,p). Transition state barrier heights can be obtained at CBS-q with B3LYP/6-31G(d ,p) geometries with rms error of 1.7 kcal/mol within a test set of ten transition state species. The method should be applicable to molecules with up to eight or more heavy atoms. Use of B3LYP/6-311G(d ,p) for geometry optimizations leads to further improvement of CBS-q barrier heights with a rms error of 1.4 kcal/mol. For reference, the CBS-QCI/APNO model chemistry was evaluated and is shown to provide very reliable predictions of barrier heights (rms error51.0 kcal/mol). © 1997 American Institute of Physics. @S0021-9606~97!02729-3#
منابع مشابه
Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory
The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...
متن کاملPii: S0166-1280(99)00047-0
Systematic computational studies of the XNO (X H, F, Cl, and OH) molecular systems with complete basis set and gaussian ab initio methods were used for accurate evaluations of their enthalpies of formation, bond dissociation energies, relative energies, and activation barriers of rotation and isomerization. It was demonstrated that experimentally determined enthalpies of formation for nitroge...
متن کاملFunctionalization of the Single-walled Carbon Nanotubes by Sulfur Dioxide and Electric Field Effect, a Theoretical Study on the Mechanism
In this study, kinetics and mechanism of the sulfur dioxide adsorption on the single-walled carbon nanotubes (CNT) are investigated. Three single-walled carbon nanotubes, including the armchair (6,6), chiral (6,5) and zigzag (6,0) CNTs were chosen as the models and the different orientations of SO2 molecule relative to the CNT axis were considered. The B3LYP functional within the 6-3...
متن کاملQuantum Chemistry Study & Evaluation of Basis Set Effects on Prediction of Amino Acids Properties:
The potential energy surface of gaseous glycine determined years ago in the ab initio B3LYP/6-311++G** calculations is composed of thirteen stable conformers. We performed the ab initiomolecular orbital calculations as the starting point to carry out a force field and normal coordinatecalculation on the most stable conformer of non-zwitterionic glycine [conformer (I)]. Thecalculations were carr...
متن کاملKinetic Study of Reaction between Allyl Compounds of Mg and Ethylene: Computational Investigation
The reactions of propenyl magnesium halides with ethylene were studied using ab initio calculations. The structure of the transition state and the ground state were evaluated and obtained the structural properties, theoretical thermodynamic and kinetic data i.e. rate constants of the reactions. The methods used for calculations are RHF, B3LYP and MP2 with 6-31G* b...
متن کامل